标准中规定雷击电流是波前时间为8μs、半峰值时间为20μs的冲击电流,得到雷击电流近似频率为50 kHz。而工频电流频率为50 Hz,对应时间周期为20μs。两者之间频率相差1000倍。
利用雷电流与工频续流的幅频特性不同,设计了两个通路,使有差异的两种电流通过不同通路。根据其在电路传输产生的感抗为
其感抗也相差 1 000 倍。而且感抗不仅与频率成正比,同时也与电感的感值成正比。
3.1 小电流通道设计方案
根据实验室测定,当压敏电阻的工频电流大于 5 A 数秒以上时,在几秒内可能引起压敏电阻燃爆。因此可以在小电流通道上设计热双金属片装置。热双金属片是由两个( 或多个) 具有不同热膨胀系数的金属或合金组元层复合在一起的材料。当电流通过此装置时,热双金属片弯曲,当达到一定行程时使之切断电源,以达到脱离电网的目的。热双金属片动作示意图如图 3 所示。
具体设计方法是在电源的输入端子依次连接动触头、执行机构、地短路整定值过电流线圈、热双金属片、电感矢量模块、输出端子。设计电流为 3 A,时间 ≤7 s。测试的工频电流特性如图 4所示。
3.2 雷击电流设计方案
设计的目标为当浪涌雷击最大的电流Imax通过SPD与之配合的专用后备保护装置时,专用后备保装置不应误脱扣,使电气设备防雷始终处于有效状态。
具体设计方法是在电源的输入端子依次连接放电型开关管、输出端子。设计指标可根据不同的雷击电流可分为Type II类型的20kA、40kA、60kA、80kA、100kA、120kA,以及Type I类型的25kA等规格型号,可以与不同规格的电涌保护器相匹配。雷击电流通道实施示意如图 5 所示。
3.3 预期短路分断能力设计方案
SPD的应用场合可以在各种类型,包括LPZ0、LPZ1、LPZ2等区域,与之对应的电网位置也有相应的预期短路分断电流。SPD的专用后备保护装置的设计也应满足与之对应的预期短路分断能力。初步设计目标为预期短路分断能力为100kA。
具体的设计方法是利用小型断路器的电磁脱扣器原理,当电流通过绕成环形的线圈时,就会产生电磁力,用以驱动断开电路。如图9所示,它由环形线圈、动铁芯、静铁芯、弹簧、脱扣杆等部件组成。在小型断路器的短路分断实验时,电流使环形线圈产生磁场,动、静铁芯在磁场力作用下快速吸合,脱扣杆在动铁芯的带动下撞击动触头机构,机构失去稳定状态,最终使动、静触头分开。短路分断实验数据如图7所示。
在充分分析SPD的失效机理后,分别针对不同失效电流提出具有针对性的解决方案。但是如何将这两种方案有机的整合成一个合格的产品是非常大的难题。本设计是利用雷击大电流(8/20us)与工频小电流的幅频特性不同(20ms),设计了三层的外壳结构,形成两条通路。用第一层与第二层相互配合,实现工频小电流的通道,让工频小电流经过此小电流通路,用以鉴别、判断、分断电路等功能;用第二层与第三层互相配合,实现雷击大电流通道,让雷电流经过此通路,用以满足不同等级的雷电流泄放能力的要求。此通路在正常状态下是开路状态,当出现雷击时,通过引导电路让此通路导通,从而泄放掉雷电流。SPD专用后备保护装置示意如图8所示。
图8 SPD 专用后备保护装置示意
SPD专用后备保护装置的应用是串联在SPD的回路上,与其配合接入电网使用,作为SPD的过电流的专用保护装置。其设定的工频小电流技术指标为3A,雷击大电流可根据不同的等级可选择不同的配置。
结语
SPD 常规后备保护装置无法兼顾大的雷击电流和小的工频电流,当电源系统故障、SPD 过流短路、工频电流通过时,其电流值有可能达不到过流保护装置的启动值,过流保护装置不动作,导致工频电流持续通过,防雷元件发热,SPD起火。若过流保护装置的启动值较小,虽能启动,但难以抗击雷电流的冲击,导致 SPD 无法正常泄放雷电流。采用鉴流技术,将两种电流区别对待,将其引导至不同的通道,针对性地分别处理。试验数据表明,该方法能够实现有效鉴别、判断、分断等功能。此外,两种通路有机整合,应用到产品中。此外,本文又将两种通路有机整合到一个产品中,实现了由理论到实践的过程。